Advanced Client Technology (A.C.T!) Centers

Best Practices—Session ONE
September 27, 2007

Sept 7, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

HPC Best Practices
— Porting and debugging on System p

Xinghong He

HPC Benchmarking Support

Advanced Client Technology (A.C.T!) Centers
IBM Systems and Technology Group

Sept 7, 2007

© 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Agenda

System environment
— HW and SW environment for this presentation

Application information gathering
— What we need for a porting engagement

Porting/debugging with IBM compilers

— How to make use of compiler capabilities
BLAS, LAPACK, and ESSL libraries

— Their relationships regarding compatibility

— Things to consider and check when migrating

3 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

System environment

= HW: Power5+ p575 cluster with HPS
— 160 dual core compute nodes — 2560 cores in total
— IBM 9118-575
—1.9GHz, 64KB L1l, 32KB L1D, 1920KB L2, 36 MB L3
— 64GB (1GBx64) DDR2 Memory

— Two GPFS file systems

» Two single core servers (8-way 2.2GHz)
 Four dual core servers (16-way 1.9GHz)

— Dual link, dual plane HPS

4 July 18, 2007

© 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Dual plane dual link switch network

Nodes

High Availability

(Fail over)

High Performance

(Message striping)

July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

System environment

= SW
— AIX 5300-05-05
— XLF 10.1.0.3, VACPP 8.0.0.12
— ESSL 4.2.0.4, PESSL 3.2.0.0
— POE 4.3.04
— LL 3.4.0.3
— PPE.XPROFILER 4.1.0.0
-~ CSM1.5.1.2
— GPFS 3.1.0.9
— PMAPI 5.3.0.50

6 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Application information gathering

Must have

— Source code

— Makefiles, build instructions and/or scripts

— Run scripts and/or instructions

— Sample input data

— Correctness criteria if not clear from output files
Nice to have

— Ported systems (HW, OS, compilers etc)

— Application docs on porting and tuning

— Sample output files

7 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Porting/debugging with IBM compilers

— Addressing space: 32-bit or 64-bit

— Sizes of basic data types: i4 or i8, r4 or r8, pointers
— Precisions of constants

— Pre-processing and Fortran suffix rules

— Name mangling — mixed-language applications

— Array bound checking

— Un-initialized variables handling

— Compiler differences in dealing with language extensions
(non-standard or not-specified)

— Run-time environments

8 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Addressing space: 32-bit or 64-bit

= Not to be confused with

— Processor family (p3/p4/p5/p6 are all 64-bit)

— OS Kernel (32-bit kernel vs 64-bit kernel)

— Floating point number precision (single precision vs double precision)
= Controlled by options —q32, —q64, and env OBJECT_MODE

— Default is 32 bit

— Option -q overrides env OBJECT_MODE

— must use the same mode for both compiling and linking

— Prefer OBJECT_MODE in many cases
= No need for separate lib/ and lib64/

— AlIX allows 32-bit and 64-bit objects coexist in the same archive

9 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Addressing space: 32-bit or 64-bit

= My app needs large memory >2GB
— Use —g64 without —bmaxdata and —bmaxstack options
— history: 32-bit default data and stack are small
= My app does not build with —q64
— Set OBJECT_MODE=64 and try again
— This takes care of library operations ar, ranlib, nm etc

= My new 64-bit app has run-time error (segmentation fault
etc)

— Check pointers (64 bits), integers (32 bits), long (64 bits)

10 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Addressing space: 32-bit or 64-bit

= To check if an executable is 32-bit or 64-bit

— S file a.out

= Some commands (hot —q32|-q64)
—1d [-b32|-b64]
—ar [-X32|-X64|-X32_64]
—nm [-X32|-X64|-X32_64]
—ranlib [-X32|-X64|-X32_64]
—dump [-X32|-X64|-X32_64]

11 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Sizes in bytes of basic C data types

Default sizes could be changed by compiler options.

Watch for int, long, long double, pointer, and Fortran integers.

July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

XLF options for data type sizes

13

-g32 - pointers, loc() are 4 bytes = -qrealsize={4|8}

-q64 - pointers, loc() are 8 bytes — Similar to —qintsize option, affect

default sizes
-gintsize={2|4|8}

— Affect default integer and logical
— Intrinsic functions are supported

— -grealsize=8 overrides —qdpc
— -grealsize=8 promotes REAL

= -gautodouble={none|dbl4|dbl4pad|

-qdpc[=e] | -qnodpc dbl8|dbl8pad|dbl|dblpad}
— double precision constant — Mostly dbl4 or dbl4pad

— dbl_var=1.00000002000 — Overrides —grealsize

this “2” will be lost without —qdpc — dbl4 promotes REAL, REAL*4

— Even worse case: call sub(a,1.0) .
— use also at link stage

Pay particular attention to external libraries
such as ESSL, PESSL, LAPACK, MPI

July 18, 2007

© 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Pre-processing and Fortran suffix rules

* Pre-processing
— Option -D is for debugging purpose ==-qdlines
— Use -WF,-Dmacro1,-Dmacro?2,...

* No space in between

» Option —d can be used to save the processed source file
(Warning: Do a list of files before using this option to
prevent file overwriting)

— Add -gsuffix=cpp=suffix if source files are not .F90 or .F

— File “a.F90” implies Fortran 90 code and “a.F” implies
Fortran 77 code, not just free format and fixed format.

14 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Pre-processing and Fortran suffix rules

= XL Fortran suffix rules Fortran 90 and 77 codes as determined
— No need to add —gsuffix for by combinations of commands and file
files of the &ffixes: f.f90 .F suffixes.
.FO0
New xIf x1190
— It's thg combinations, not the
compiler commands (xlf, xIf90), a.f F77 F90

nor the file suffixes, which
determine the file type (see

table on the right). a.fo0 F90 F90
— Fixed or free format is implied a.F F77 F90
— Behavior can be changed by

explicit options such as — a.F90 F90 F90

gfixed, -gfree, -gsave, -
gnosave eftc.

15 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Fortran name mangling

Fortran compilers often change some symbols (functions,
subroutines, common blocks etc) internally.

Different vendors (compilers) do this differently — no standard.

Not an issue if app is not mixed-language (C, Fortran)

Could be a source of headache for mixed-language apps
involving multiple packages (FFTW, netCDF, HDF, MPICH etc).

Typical error
x1f flush.f #flush.f contains call flush(12)
1d: 0711-317 ERROR: Undefined symbol: .flush

16 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Fortran name mangling - default

17

Compilers |suba subb_ Default option

g77/pathf90 |suba_ |[subb___ |[-funderscoring -fsecond-
underscore]

gfortran suba_ |subb__ [-funderscoring -fno-second-
underscore]

ifort suba_ |subb__ [-us -assume
no2underscores]

pgf77 suba_ |subb__ [-Munderscoring -
Mnosecond_underscore]

x|f suba subb_ [-gnoextname]

July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Fortran name mangling — no underscore

18

Compilers |suba subb_ Options
g77/pathf90 | suba subb_ —-fno-underscoring
gfortran suba subb_ -fno-underscoring
ifort suba subb_ -nus

pgf77 suba subb_ —~Mnounderscoring
xIf suba subb_ default

July 18, 2007

© 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Fortran name mangling — one underscore

19

Compilers |suba subb_ Options

g77/pathf90 |suba_ |subb__ —funderscoring -fno-
second-underscore

gfortran suba_ |subb__ default

ifort suba_ |subb__ default

pgf77 suba_ |subb__ default

x|f suba_ |subb__ —gextname

July 18, 2007

© 2007 IBM Corporation

Fortran name mangling — one and two underscores

20

Advanced Client Technology (A.C.T!) Centers

Compilers |suba subb_ Options

g77/pathf90 |suba_ |subb___ |default

gfortran suba_ |subb___ |-funderscoring -fsecond-
underscore

ifort suba_ |subb___ |-us -assume 2underscores

pgf77 suba_ |subb___ |-Munderscoring -
Msecond_underscore]

xIf suba subb N/A, use —brename

July 18, 2007

© 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

XLF options handling names

= -gextname[=name1[:nameZ2...]] | -qnoexthame
— namei1-> namel_, name2->name2 ,...
— -gextname without a name list will convert all
— compile time, no dots involved
— -gextern=name is totally different. (external vs. intrinsic)

= -prename:old _name,new_name
— one pair per option
— often starts with a dot=>.0ld _name,.new _name
— Nno space around
— link time

- -qextname and -brename can be combined

21 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Inter language calls (C and Fortran)

= XLF converts symbols to lower case by default

— Use option —U or directive @PROCESS=MIXED to
preserve case

— Intrinsic functions must be in lower case if —U is used

= XLF always call-by-reference while C can do call-
by-reference and call-by-value

— Use %VAL, %REF to change it
— Example: iptr = malloc(%VAL(n))

22 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

XLF name mangling example

$ cat a.f = § xIf a.f
call sub — will fail because no sub
end = § xIf -gextname a.f
subroutine suba — will also fail because both sub

o , and sub_ get an underscore
print *, 'suba called

$ xIf -gextname=sub a.f

end .
— will call sub__

subroutine sub_

$ xIf -brename:.sub,.suba a.f

rint *, 'sub_ called’ .
¥ - — will call suba

end

23 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Debugging with XLF

= Tools are a great help for debugging
— idebug, totalview, dbx, gdb

= XLF compiler can do some work very easily and
effectively

—Name mangling

— Sizes of basic data types

— Array bound checking

— Un-initialized variables and arrays
— Floating point exception catching

24 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Array bound checking with XLF

= Compile code with -Cc -g options
— =C turns on checking at compile time and run-time

— Some errors are caught at compile time, some run-time

— =g helps with line number of the error (debugger), could be
omitted or replaced by -glinedebug.

= Run the code
= Run dbx or gdb to find the line of error

= Problem: legacy code dummy argument arrays

subroutine suba (n, a)
dimension a(l) I actually meant for a(n)

25 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Array bound checking with XLF - Example

26

dimension a(3)
doi=0,4

a(i) =i s This line will be caught at run-

end do

print *, a

Compile time or run-time?
It may change.

time if compiled with —C -g

print *, a(0), a(4) <=

This line will be caught at compile
time with options —C —g -qdlines

end

July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Array bound checking with XLF - Example

$ x1f -C -g bound.f
$ a.out $ x1f —-gdlines -C —-g bound.f

Trace/BPT trap(coredump) "bound.f", line 6.16: 1516-023 (S)
Subscript is out of bounds.

"bound.f", line 6.22: 1516-023 (S)

5 dbx a.out Subscript is out of bounds.

Type "help’ for help. ** main === End of Compilation 1

[using memory image in core] ===

reading symbolic information ... 1501-511 Compilation failed for file
bound.f.

Trace/BPT trap in _main at line 3
3 a(i) =i

27 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Array bound checking and dummy arguments

28

subroutine aa(n,a)
dimension a(1)

doi=1,n

print*, a(i) <G===—

enddo

end

This line will core dump if array
bound checking is turned on (xIf

Undesirable, but ...any other

way except changing the code
a(1) toa(n) ?

July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Find un-initialized variables

1. Compile with —-g —-gnosave -qginitauto=FF -
gflttrap=nang
— Every option has its role

-gsave will always set —ginitauto=0
-gfittrap=nanqg will trap the error, not letting go with nang

— WIll catch (cause core dump) un-initialized REAL*4
and REAL*8, including COMPLEX

— Replace FF by 7FBFFFFF to catch REAL*4 only
2. Run the code followed by dbx or gdb

-qinitauto=0 may be desirable in most cases

29 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Un-initialized variables - Example

real a(3) $ x1£f90 -g —ginitauto=FF -
gflttrap=nang tmp.f

do i =1, 3
$./a.out

a(i) = a(i) + 100 Trace/BPT trap(coredump)

enddo $ dbx a.out
print *,
end Trace/BPT trap in _main at line 3

3 a(i) = a(i) + 100

30 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Fortran90 derived data types - example

31

subroutine sub (myname)

Lype name

| sequence

character (20) lastname
character (10) firstname
character (1) initial

end type name
type (name) myname

print *, myname

end subroutine

= XLF (v10.1 and v11.1)
requires the explicit sequence
statement — Reason: dummy
argument.

= All the following do not
require it. No warning
message too.

— gfortran 4.0.2

— Intel ifort 9.1

— Pathscale pathf90 2.5
— PGl pgf90 6.2.5

July 18, 2007

© 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

More floating point exception handlings

= -qflttrap=ov:und:inv:zero:nanq:en

— The last suboption “en” is needed. Otherwise the user
needs to implement exception handler

— —qflttrap alone means
-gflttrap=inv:inex:ov:und:zero

32 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Run-time environments

= LIBPATH = XLFRTEOPTS
— for shared libs, not normally — XLF run-time
used = XLSMPOPTS
= TMPDIR — for SMP code
— for scratch files = OMP_NUM _THREADS
— default is /tmp — for OpenMP code
= PDFDIR — Recommend to setto 1 in
— if doing PDF runs .cshrc file to avoid surprise

KX] July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Run-time environments

= Little endian to big endian
— export XLFRTEOPTS=ufmt_littleendian=list_of units
— list_of units is a coma-separated list of Fortran 1/0O units
— example: -7,11,13,15-20,70-
— UNFORMATTED files only

— Id-landles REAL*4, REAL*8 appropriately, not REAL*16 data, not derived type
ata.

= 1/O buffering
— export XLFRTEOPTS=Dbuffering={enable|disable_preconn|disable_all}
— preconn I/O units are 0, 5, 6
— Performance (enable) and mixed language apps (disable)
= NAMELIST
— XLFRTEOPTS=namelist={new|old}

34 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

BLAS, LAPACK, ESSL

Same name,
same functionality

LAPACK

I~

same name, _ Different name, same
different functionality (similar) functionality

35 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

LAPACK - CCIl - ESSL

= CCI stands for Call Conversion Interface
— A collection of wrappers of LAPACK routines using ESSL.

— Help LAPACK users to use ESSL without modifying their
source codes.

— Available from netlib.
— Latest version 1.2, 2000-12-07.

— Qut dated. Only 1, out of 30, is not in the Green zone (ESSL
4.2).

— There are still candidates for CCI.

36 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Call Conversion Interface (CCl 1.2), netlib

cgetrf.f dgetrs.f dpptri.f spbtrf.f stptri.f
cgetrs.f dpbtrf.f dtptri.f spotrf.f strtri.f
cpotrf.f dpotrf.f dtrtri.f spotri.f =zgetrf.f
cpotrs.f dpotri.f sgetrf.f spotrs.f =zgetrs.f
dgetrf.f dpotrs.f sgetri.f spptrf.f zpotrf.f
dgetri.f dpptrf.f sgetrs.f spptri.f zpotrs.f

All are now directly available from ESSL 4.2 except
spbtrf.f

37 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

LAPACKS3.1.1 routines included in ESSL4.2

For these routines, always link ESSL before
LAPACK for performance.

38 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

= These routines have the
same name in ESSL and
LAPACK, but they function
differently.

= In case any of them are used,
link order matters for
correctness !

39 July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

LAPACK routines to ESSL - Unofficial

40

LAPACK wrapper | Calls ESSL | Note

dsyev dspev Eigenvalues and, optionally,
the eigenvectors of a real
Red Zone.

zheev zhpev Eigenvalues and, optionally,

the eigenvectors of a complex
hermitian matrix. zhpev is in
Red Zone.

Link the wrappers with ESSL, not LAPACK

July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

LINPACK routines to ESSL - Unofficial

41

LINPACK wrapper | Calls ESSL | Note

cgefa cgetrf General matrix factorization.
SMP, in Green Zone.

dgefa dgetrf

cgesl cgetrs General matrix multiple right-
hand side solve. SMP, in

dges| dgetrs Green Zone.

July 18, 2007 © 2007 IBM Corporation

Advanced Client Technology (A.C.T!) Centers

Summary

Understand compiler differences

Make best use of compiler capabilities

— —-WF, -Dmacro -g —-g32 —-g64 —-gextname —-gextern -
gintsize —-gdpc —-grealsize —-gautodbl —-gintlog -
ginitauto —gflttrap —-brename -C

Set XLFRTEOPTS properly

Understand relationships among ESSL, LAPACK, BLAS
— Green Zone, Red Zone, CCI concept

42 July 18, 2007 © 2007 IBM Corporation

